:
پالایشگاه نفت بندر عباس بعلت تنوع در نوع خوراك یكی از پالایشگاه های منحصر به فرد در ایران می باشد كه حتی موفق به تصفیه نفت خام فوق سنگین چاه های سروش و نوروز نیزشده است (كه كمتر پالایشگاهی قادر به تصفیه چنین نفت خامی می باشد). این پالایشگاه درتیر ماه سال 1387 افزایش ظرفیتی 30000 بشكه ای را پشت سر گذاشته و در حال حاضر با دو واحد تقطیر قادر به تصفیه 320000 بشكه در روز میباشد.
نفت خام بعد از طی مراحل پیش گرم و نمك زدایی وارد كوره و نهایتا برج اتمسف ریک میشود كه در این برج از آن محصولات بالادستی (گاز مایع، بنزین، نفتای سبك و نفتای سنگین) و میان تقطیر (نفت سفید و گازوئیل) بدست آمده و ته مانده برج اتمسفریک بعد از عبور از كوره قسمت خلاء وارد برج تقطیر در خلاء می شود و در نهایت ته مانده برج خلاء خوراك واحد غلظت شكن می گردد. و ارزش واحد كاهش گرانروی بر می گردد به تولید بنزین، گاز مایع و گازوئیل از خوراك نا مرغوب ته مانده برج خلاء (Vacuum Bottom).
با توجه به افزایش ظرفیت واحدهای تقطیر و نهایتا افزایش میزان محصول ته مانده برج خلاء بر آن شدیم تا ابتدا واحد غلظت شكن را با كمك نرم افزار Petro-sim شبیه سازی و با تغییر در متغیر های عملیاتی و كار روی نقاط مهم، آنها را بهینه كنیم و بعد از آن با نگرش افزایش بنزین راه حل هایی جهت دست یابی به این مهم برداریم باشد تا قدمی هر چند كوچك در راه خود كفایی این فرآورده برداشته باشیم.
فصل اول: کلیات
1-1) هدف
عملیات كاهش گرانروی (Visbreaking) شكست حرارتی نسبتا ملایمی برای تبدیل باقیمانده برج تقطیر در خلاء پالایشگاهی است كه به منظور كاهش گرانروی و نقطه ریزش باقیمانده خلاء به كار می رود تا نفت سوختی با مشخصات معین تولید كند.از مزایای این واحد، كم بودن سرمایه لازم برای ساخت و راه اندازی است. عامل اصلی بالا بودن گرانروی و نقطه ریزش در باقیمانده های نفتی، زنجیرهای پارافینی بلندی است كه به حلقه های آروماتیكی متصلند .بنابراین واكنش باید در شرایطی عملی شود كه جدا شدن این گونه زنجیرها و كراكینگ بعدی آنها امكان پذیر باشد.
در این واحد، شدت كراكینگ زیاد نیست، زیرا شدت عمل باعث ایجاد تركیبات ناپایدار در فرآورده می شود كه به هنگام ذخیره سازی مواد پلیمری پدید می آید. در واقع هدف این عملیات، كاهش گرانروی سوخت است، بی آن كه تغییر محسوسی در ثبات سوخت ایجاد شود. همین امر سبب شده است كه در مورد اغلب خوراك ها شدت شكست حرارتی را كاهش دهند كه در نتیجه تولید بنزین و مواد سبك تر كمتر از 10 % كاهش می یابد.
از منظری دیگر و با نگاه به افزایش ظرفیت پالایشگاه و با رویكرد بالا بری بهره وری در این واحد سعی می شود با مستندات موجود و با كمك نرم افزار و تغییر در متغیر های عملیاتی راه حل هایی جهت افزایش تولید بنزین و در كل افزایش بازده عملیاتی از این واحد ارائه نمائیم و در صورت عملیاتی شدن نتایج، گامی در جهت نیل به حركت ایجاد شده در بهره وری هر چه بیشتر واحد های عملیاتی برداشته باشیم.
2-1) پیشینه تحقیق:
واحدهای غلظت شكن در پالایشگاه های ما معمولا به روش كوره است و فقط پالایشگاه نفت بندر عباس، تهران و تبریز از روش سوكر (Soaker) می باشند (در این مورد در بخش های بعد توضیح داده خواهد شد) لذا در بعضی از این پالایشگاه ها تحقیق توسط نرم افزار های مختلف انجام شده و یا در حال انجام است. اما در پالایشگاه بندر عباس بعلت افزایش ظرفیت، این ضرورت احساس شده و اخیرا پالایشگاه با بعضی از شركتهای داخلی و خارجی در حال بررسی واحدهای پالایشی از حیث بهره وری است. البته مقالات وكتب معتبر در رابطه با رفتارهای ئیدروكربنهای سنگین و نیز واحد های غلظت شكن موجود می باشد.
:
نگرانی در مورد انتشار گازهای آلاینده به اتمسفر و افزایش دمای زمین چند سالی است که از مهمترین نگرانی های نوع بشر شده است. افزایش استفاده از سوخت های فسیلی با افزایش روزافزون تقاضا برای انرژی، دانشمندان را به یافتن منابع انرژی جایگزین و تجدیدپذیر واداشته است. از طرف دیگر، دفع پسماندهای شهری در لندفیلدها، خود از مشکلاتی است که نگرانی های زیست محیطی چون آلوده شدن منابع آب های زیرزمینی در نتیجه نفوذ شیرابه حاصل از پسماندهای دفن شده در زیر خاک، شیوع بیماری ها، بوی مشمئز کننده حاصل از تعفن و بسیاری از موارد دیگر، دانشمندان را به مطالعه و تحقیق برای یافتن راه حلی برای تصفیه شیرابه و روش های دفع آن واداشته است. شیرابه حاصل از لندفیلد یکی از آلوده ترین پساب ها می باشد که BOD و COD بسیار زیاد آن وجه تمایز شیرابه و فاضلاب شهری است. روش های مختلف در تصفیه شیرابه کاربرد دارد اما با هیچ یک از روش های موجود چه از بعد مصرف انرژی و هزینه های گزاف تحمیلی و چه از بعد راندمان مناسب و کاهش BOD و COD آن به نحوی که قابل دفع در محیط باشد نتایج مطلوب به دست نیامده است. تکنولوژی پیل های سوختی میکروبی چند دهه ای است که از اهمیت ویژه ای برخوردار شده است. پیل سوختی میکروبی به لحاظ “سبز” بودن مناسب ترین تکنولوژی برای تصفیه شیرابه و تولید همزمان انرژی می باشد. اما مشکل اساسی آن، توان خروجی و بازدهی کم انرژی آن است که عمدتا ناشی از متابولیسم کند میکروب ها می باشد. به هرحال، با پیشرفت های زیادی که در توسعه آن حاصل می شود، می توان به آینده پرکاربرد این تکنولوژی چه در زمینه تصفیه پساب و چه در زمینه تولید انرژی تجدیدپذیر بسیار امیدوار بود.
در این تحقیق، ابتدا به معرفی پیل سوختی، تاریخچه، مبانی و انواع آن پرداخته شده است که پیل سوختی میکروبی نیز از نسل های بعدی آن محسوب می شود. سپس، پیل های سوختی میکروبی و انواع آن مطرح شده است. تشریح اجزا، مکانیسم عملکرد، کاربردها و مسائل و مشکلات مربوط به آن به تفصیل مطرح شده است. در پایان نیز به کاربرد پیل های سوختی میکروبی در تصفیه شیرابه و پیشرفت های اخیر آن پرداخته شده است.
اتیلن یکی از مهمترین مواد در صنایع پتروشیمی است که اساس تولید خیلی از محصولات پتروشیمی نیز است. یکی از روش های تبدیل گاز طبیعی به اتیلن استفاده از فرایند OCM است. این روش در واقع تبدیل مستقیم متان از طریق اکساینده ها است. البته روش های مختلفی جهت طراحی فرایندهایی که در آن تبدیل مستقیم گاز طبیعی به محصولات باارزش مانند اتیلن و اتان پیشنهاد شده است. از بین این روش ها فرایند OCM به عنوان بهترین راه جهت تبدیل متان به هیدروکربن های C2 شناخته می شود.
سنتز اتان و اتیلن به وسیله واکنش OCM به خاطر اکسیداسیون پیچیده غیرهمگن و کاتالیستی بودن دارای گزینش پذیری و بازدهی پایینی است. واکنش ها و فرایندهای زیادی جهت تولید اتیلن آزمایش شده است و تحقیقات نیز جهت بهبود گزینش پذیری و بازدهی اتیلن ادامه دارد. در این راستا کاتالیست های مختلفی در واکنش های همگن – غیر همگن امتحان شده است. واکنش در دماهای مختلفی صورت گرفته است و نسبت های مختلفی از متان به اکسیژن ورودی آزمایش شده است. اتان و اتیلن با جفت شدن رادیکال های متیل در فاز گازی تشکیل می شوند. علاوه بر جفت شدن رادیکال ها با یکدیگر واکنش های نامطلوب ممکن است به تشکیل COx ها منجر شوند. در بسیاری موارد یک رابطه مستقیم بین خواص بازی و اسیدی و عملکرد کاتالیست وجود دارد.
مثال هایی نیز وجود دارد که کاهش در خواص بازی کاتالیست، سوددهی داشته و از تشکیل کربنات (به عنوان سم کاتالیست) که در نتیجه دی اکسید کربن تولید شده در فرایند حاصل می شود، جلوگیری می کند.
آزمایش های زیادی انجام می گیرد که فرایند OCM برای تولید هیدروکربن های C2 علی الخصوص اتیلن با بازدهی بالا انجام گیرد. بنابراین در راستای یافتن برای بهترین و موثرترین کاتالیست راکتورهای مختلفی نیز مورد آزمایش قرار گرفته اند که ضمن تبدیل بالای متان بر محدودیت بازدهی پایین و گزینش پذیری پایین اتیلن نیز غلبه کنند.
فصل اول
1- کلیات
1-1- فرایند تبدیل مستقیم اتات به اتیلن
فرایند تبدیل متان به اتیلن با وجود پیچیدگی ها و مراحل زیاد در دو مرحله واکنش زیر خلاصه می گردد:
(1) 4CH4+O2->2C2H6+2H2O
(2) C2H6->C2H4+H2
مکانیسم واکنش های فوق پیچیده است. قسمتی از اکسیژن بر روی سطح کاتالیست در دماهای بالا فعال شده و با متان بر روی سطح فلز واکنش می دهند. در این حالت ساختار خاصی برای اکسیژن مانند O- تصور می شود که بسیار فعال می باشد. بنابراین می توان تصور کرد که فرایند OCM تنها در دماهای بالا و معمولا در رنج دمایی (1073 – 873 درجه کلوین) رخ می دهد. اگر O- یک گونه فعال باشد O- یا سطحی که O- را بروی خود قبول می کند باید در دمای بسیار بالایی بر روی سطح فلز تولید شود. در این حالت متان با از دست دادن هیدروژن بر روی سطوح فعال برای تشکیل رادیکال های متیل فعال می شود. اتان و اتیلن نیز در نتیجه جفت شدن رادیکال های متیا در فاز گازی تشکیل می شوند.
انواع راکتورها از جمله راکتور با بستر ثابت، بستر سیال، غشاء، راکتور با جریان معکوس و راکتور با بستر متحرک جریان غیرهمسو آزمایش شده و شبیه سازی شده اند اما راکتور با بستر ثابت و راکتور با بستر سیال در مطالعات آزمایشگاهی کاربرد زیادتری داشته است و آن هم به خاطر سهولت کار کردن با آنها نسبت به بقیه است. در این مطالعه ما قصد داریم که با استفاده همزمان از این دو راکتور ضمن تبدیل بالای متان بازدهی و گزینش پذیری اتان و اتیلن را بالا ببریم. اما قبل از ورود به فرایند مورد نظر نتایج حاصله از آزمایشات که با این نوع راکتورها انجام شده و در آن از کاتالیست های مختلف استفاده شده و واکنش ها نیز در شرایط عملیاتی مختلفی انجام شده است بپردازیم. سپس با انتخاب موثرترین کاتالیست و بهترین شرایط عملیاتی به طراحی واکنش بپردازیم و نتایج حاصل از آن را به صورت مدل ریاضی در بیاوریم.
بنابراین مطالعه را در دو بخش ابتدا راکتورهای بستر ثابت که در آن تاثیر کاتالیست های مختلف و شرایط عملیاتی آزمایش می شود و سپس راکتورهای بستر سیال در آن آزمایش می شوند، انجام می دهیم. بعد به بررسی طرحی می پردازیم که در آن واکنش OCM ابتدا در یک راکتور با بستر ثابت (یا راکتور فلودایز) انجام می شود و جریان خروجی از راکتور اول از یک مرحله جداسازی که در آن محصولات از متان و سایر گازها جدا می شوند عبور می کند و متان واکنش نکرده خروجی راکتور اول، وارد راکتور دوم می گردد.
اسید فسفریک صنعتی تولید با روش تر (Wet- Process) که محصول واکنش سنگ معدن فسفات و اسید سولفوریک است، به منظور خالص سازی و به دست آوردن اسید فسفریک در درجه های خوراکی و دارویی و… به وسیله سرمایش مستقیم کریستاله شد.
بررسی های انجام شده به وسیله آزمایش نشان داد که کریستالیزاسیون مستقیم به دلیل افزایش شدید ویسکوزیته در دماهای پایین تر از (20- درجه سانتیگراد) امکان پذیر نیست. همچنین آزمایشات نسان داد که ناخالصی های موجود در اسید فسفریک صنعتی مانند کلسیم، منیزیم، آهن و آلومینیوم که از طریق سنگ معدن فسفات و اسید فسفریک وارد محصول می شوند، مقاومت اسید را برای رسیدن به ناحیه فوق اشباع و کریستالیزاسیون به شدت افزایش می دهند و اسید در دماهای پایین به توده ای سخت و منجمد تبدیل می شود.
برای جلوگیری از این امر قبل از اینکه پدیده توده ای شدن اتفاق بیفتد در دمای 15- درجه سانتیگراد از دانه های اسید فسفریک (Seeds) استفاده می کنیم. در این صورت فوق اشباعی صرفا در جهت رشد دانه ها مصرف می شود و از هسته زائی اولیه (Primery nucleation) که عاملی مهم در افزایش ویسکوزیته است جلوگیری می شود. برای کاهش ویسکوزیته در حین سرمایش از محلول های بی اثر مانند آب مقطر و اسید سولفوریک استفاده شد.
در انتها نیز کریستالیزوری برای تولید یک تن اسید سولفوریک در روز به همراه سیستم سرمایش آن با بهره گرفتن از داده های به دست آمده طراحی شده است.
فصل اول: خصوصیات فیزیکی و شیمیایی اسیدفسفریک
1-1- اسید فسفریک
1-1-1- خصوصیات
خصوصیات فیزیکی: اسید فسفریک به صورت بدون آب و خالص H3PO4 با mp=42/35 درجه سانتیگراد و Mw=98 و p=1/88g/cm3 به فرم کریستال های بی رنگ و قابل حل در آب می باشد. اسید فسفریک آبدار با فرمول 1/2H2O , H3PO4 نیز شناخته شده است. شکل 1-1 دیاگرام فازی H3PO+H2O را نشان می دهد.
اسید فسفریک به طور نامحدود در آب قابل حل می باشد. این ماده در سه غلظت استاندارد در دسترس می باشد.
75% H3PO4 with 54,3% P2O5 , mp=-20 ‘C
80% H3PO4 with 58,0% P2O5 , mp=0 ‘C
85% H3PO4 with 61,6% P2O5 , mp=21 ‘C
اسید 85% (p=1,687g/cm3) شربتی مانند است، دارای ویسکوزیته بالایی می باشد و در شرایط سرمای زیاد (super cool) نگهداری می شود. اسید بی آب را می تواند از اسید 85% با تبخیر در دمای 80 درجه سانتیگراد به دست آورد.
جدول (1-2) و (1-3) نیز تغییرات دانسیته اسید فسفریک را در غلظت های مختلف و در محدوده دمایی 10 – 40 درجه سانتیگراد نشان می دهند.
جدول (1-4) و (1-5) ظرفیت گرمایی اسید فسفریک را در دماها و غلظت های مختلف نشان می دهند.
سایر خصوصیات فیزیکی اسید فسفریک نظیر گرمای تشکیل و ذوب اسید فسفریک، فشار بخار محلول های اسید فسفریک، نقطه جوش و انجماد و گرمای رقیق سازی در شکل ها و جداول زیر نشان داده شده است.
این جداول نشان می دهند که دانسیته اسید فسفریک در محدوده دمایی 25 – 100 درجه سانتیگراد تقریبا ثابت باقی می ماند. همچنین با بهره گرفتن از این جداول می توان دریافت که این قانون برای گرمای مخصوص (Specific heat) نیز صحیح است.
خصوصیات شیمیایی: ارتو فسفریک اسید به صورت سه ظرفیتی (tribasic) می باشد. ثوابت تفکیک به قرار زیر می باشد.
با این پایه base محلول آبی دی هیدروژن فسفات دارای قدرت اسیدی ضعیف می باشد و به دنبال آن محلول آبی هیدروژن فسفات و سپس سومین فسفات دارای قدرت اسیدی ضعیف تر و یا دارای قدرت بیشتری می باشند.
:
صنایع پتروشیمی به دلیل تولید مواد با ارزش افزوده بالا و تهیه مواد اولیه صنایع دیگر مورد توجه اکثر کشورها قرار گرفته است. در این صنایع از نفت و گاز طبیعی محصولات باارزشی همچون اولفین ها مانند پروپیلن، اتیلن و نیز وینیل استات، اکسید اتیلن و هزاران ماده ارزشمند دیگر تولید می شود که هرکدام به نوبه خود ماده اولیه برای سایر قسمتها و واحدهای صنعتی پایین دستی می باشند.
به لحاظ این که مواد اولفینی، ساختار اولیه برای مواد پلیمری هستند، ایجاد زنجیره های سنگین هیدروکربنی در ادامه عملیات شکست حرارتی امری اجتناب ناپذیر است.
برای مقابله با واکنش های ثانویه می بایست جریان خروجی از راکتورسریعاً خنک شود و به درجه حرارتی که از توقف واکنش های ثانویه جلوگیری نماید، برسد. در نتیجه استفاده از مبدلهای خط تبادل که اختصارا TLE نامیده می شود در واحد ضرورت پیدا می کند. پیش از این در دهه های گذشته، عملیات سرد کردن جریان خروجی از راکتور شکست حرارتی بوسیله تزریق روغن و یا آب انجام می شد که به روش های سرد کردن مستقیم معروفند. این روش علاوه بر افزایش هزینه های جداسازی، اتلاف حرارتی زیادی نیز به همراه داشت. استفاده از این گونه مبدلها، علاوه بر کاهش هزینه های جداسازی، تولید بخار با فشار بالا (قابل استفاده در توربین ها) را نیز به همراه خواهد داشت که در کاهش هزینه های واحد سهم بسزایی دارد.
بی تردید مدل سازی وشبیه سازی فرایند ها در واحدهای صنعتی از اهمیت خاصی برخوردار می باشد. امروزه شبیه سازی به معنای استفاده از کامپیوتر درحل مدلهای ریاضی سیستم است که ابزار کار طراح می باشد و طراح را قادر به مطالعه فرایند می کند. مزیت اصلی مدل سازی و شبیه سازی در این است که با صرف کمترین هزینه و درکوتاه ترین مدت زمان، می توان با دقت بالائی همان نتایج تجربی را بدست آورد بدون آن که تغییری در واحد صنعتی داده شود.






