پارامتر مهمی که امروزه در صنعت مورد توجه قرار گرفته است، بزرگ شدن اندازه ماشین ها به موازات پیشرفت صنعتی بوده است. چرخ های آبی کوچک تبدیل به ماشین های بزرگتر و قدرتمندتر شدند. به طوری که در اواخر 1970 و با بهره گرفتن از انرژی هسته ای توربین های بخاری از مرز 1000 مگاوات نیز گذشتند. هرچند بازده این نیروگاه ها از 34 درصد فراتر نرفت، در دهه 80 میلادی توربین های گازی پر بازده در قالب سیکل ترکیبی توان الکتریکی را با بازده 50 درصد تولید کردند. تکنولوژی سیکل ترکیبی باعث شد که واحدهای کوچکتر تولید قدرت قابلیت رقابت با نیروگاه های بزرگ را بیابند به طوری که ساخت نیروگاه های با قدرت 100 تا 200 مگاوات اقتصادی شد. تمایل به ساخت واحدهای کوچکتر همچنان ادامه دارد. توسعه تکنولوژیک به همراه تولید انبوه به تدریج چارچوب اقتصادی بودن اندازه های بزرگ را زیر سوال برده و به تدریج آن را کنار می زند.
توجه به مولدهای پراکنده برای کاستن تمرکز تولید قدرت الکتریکی است که اخیرا به نتایج قابل توجهی در زمینه صرفه جویی و جلوگیری از اتلاف انرژی رسیده و به قابلیت اطمینان منجر شده است. مولدهای پراکنده توانایی تولید توان بین 3 تا 10 کیلووات برای مصارف خانگی، 50 تا 500 کیلووات برای مصارف تجاری و 1 تا 50 مگاوات برای مصارف صنعتی را دارا می باشند. اولین فایده موجود در کاربرد این تکنولوژی بدین صورت است که اولا کیفیت خدمات در زمینه تحویل انرژی به مصرف کنندگان نهایی بهبود می یابد و ثانیا قابلیت اطمینان سیستم های تولید و توزیع قدرت افزایش می یابد.
با در نظر داشتن این جوانب اداره انرژی ایالت متحده برنامه درازمدت چند میلیارد دلاری خود را در زمینه مولدهای پراکنده اعلام کرده است. امروزه روند پیشرفت در این زمینه با گام های بلندتری دنبال می شود. بخش توزیع و انتقال قدرت تولید قدرت در حدود 7 درصد کل انرژی منتقل شده را تلف می کند که در مقیاس صنعتی تولید قدرت مقدار قابل توجهی می باشد.
استفاده از انرژی های سبز همانند انرژی باد و سلول های خورشید کاربرد فراوان در تولید توان پیدا کرده است. هرچند کاربرد این مولدها از نظر زیست محیطی مطلوب شمرده می شمود اما از نظر اقتصادی، در حال حاضر، به هیچ وجه مناسب نیستند.
استفاده از پیل سوختی نیز گرچه بسیار امیدبخش به نظر می رسد، چه از نظر زیست محیطی و چه از نظر بازده، اما هنوز برای استفاده اقتصادی فاصله زیادی است. در هرحال هزینه تولید برق با پیل سوختی حدود 10 برابر مولدهای عادی است.
جدول (1-1) توان تولیدی انواع مولدهای پراکنده آورده شده است.
مشکلات و هزینه های مربوط به انتقال نیرو از محل تولید به محل مصرف و تعمیرات و نگهداری سیستم های بزرگ مولد انرژی در محل مصرف اقدام کنند. برای این منظور استفاده از مولدهای با هزینه کمتر در تولید، انتقال، تعمیرات و نگهداری مورد توجه قرار گرفته است میکروتوربین ها که طی چند سال اخیر تولید آنها آغاز شده به علت تنوع در ابعاد و توان تولید حجم ناچیز، تمیزی سیستم، قابلیت اعتماد بالا کارایی در کاربردهای متنوع نسبت به سیستم های موجود، راندمان بالا و تنوع در مصرف سوخت های مختلف نظیر گاز طبیعی، گازوییل، اتانول و سایر سوخت ها کاربردهای وسیعی برای اهداف ذکر شده یافته اند. لذا با توجه به مواد فوق بررسی و تحقیق در زمینه میکروتوربین ها جهت دستیابی به تکنولوژی طراحی و ساخت آنها از اهمیت بالایی برخوردار می باشند.
:
انتقال حرارت یکی از راه های رایج انتقال انرژی بین دو جسم می باشد است. اهمیت این مبحث تا جایی است که در بسیاری از پدیده های طبیعی یا صنعتی به طور اختصاصی مورد مطالعه قرار می گیرد. حرارت همواره از محیط با دمای بیشتر به محیط با دمای کمتر انتقال می یابد. رسانش (هدایت)، جابجایی و تشعشع (تابش) سه مکانیزم انتقال حرارت هستند. رسانش و جابجایی به ترتیب مکانیزم های انتقال حرارت در جامدات و سیالات می باشند. تشعشع برای انتشار به محیط مادی نیاز ندارد و در هر سه فاز جامد مایع و گاز وجود دارد.
در اغلب موارد انتقال حرارت کلی ترکیبی از دو یا سه مکانیزم فوق می باشد که صرفنظر کردن از یک مکانیزم موجب بروز خطاهای نسبتا قابل توجه در محاسبات می گردد. به طور مثال در نظر گرفتن همزمان جابجایی و تشعشع برای مسائل کوره ها، موتورهای احتراق داخلی، نازل های موشک و پدیده های جوی ضروری است.
با توجه به کاربرد گسترده علم انتقال حرارت در صنایع مختلف و میزان انرژی مورد استفاده در جریان فرایند انتقال حرارت اهمیت و لزوم محاسبه دقیق میزان انرژی گرمایی مبادله شده نمایان می گردد. بررسی جریان های عبوری از داخل کانال ها یکی از موارد مهم و پرکاربرد انتقال حرارت می باشد. در این میان کانال های عمودی به دلیل تاثیرات نیروی شناوری بیشتر مورد توجه می باشند. جریان عبوری از این کانال ها در اغلب موارد گاز می باشد. البته بسته به کاربرد کانال جریان های دو فازی گاز – جامد و گاز – مایع نیز ممکن است به وجود آیند. مبدل های حرارتی، تاسیسات خنک سازی راکتورهای هسته ای، تجهیزات مربوط به فرایندهای شیمیایی و جمع کننده های انرژی در نیروگاه های خورشیدی از جمله مواردی هستند که کانال های عمودی در آنها مورد استفاده قرار می گیرند. همچنین به منظور خنک سازی سیستم های الکترونیکی مانند ترانزیستورها، کامپیوترها و ترانسفورماتورها از کانالی های عمودی استفاده می شود. بدین منظور قطعات و مدارهای الکترونیکی را بر روی صفحات مخصوص نصب نموده و سپس صفحات را به صورت عمودی در کنار هم قرار می دهند. با توجه به حساسیت قطعات و نیز گرمای تولید شده توسط آنها از بین صفحات سیال خنک عبور می دهند.
کانال های قائم در محیط های متخلخل نیز به کار می روند که به عنوان مثال می توان به کاربرد آنها در علوم هیدرولوژی، مسائل مربوط به مدلسازی مخازن سوخت، فرایندهای تولید فلزات و مخازن جمع آوری زباله های هسته ای اشاره نمود.
در حالت کلی در جریان بررسی انتقال حرارت برای جریان های عبوری از داخل کانال های عمودی چنانچه سهم تشعشع دیواره ها و یا سیال عامل در انتقال حرارت کلی ناچیز در نظر گرفته شود، انتقال حرارت تنها از جنبه جابجایی بررسی می گردد، اما در صورتی که اختلاف دمای سیال با دیواره قابل توجه باشد و دمای دیواره یا سیال نسبتا زیاد باشد صرفنظر کردن از تشعشع خطای بزرگی را در انتقال حرارت کلی به دنبال دارد و لذا برای این موارد انتقال حرارت ترکیبی جابجایی – تشعشع در نظر گرفته می شود.
با ارائه توضیحات فوق شناسایی مکانیزم تشعشع در گازها و تعیین شدت جریان تشعشعی از یک گاز به سطوح مجاور و بالعکس، از مباحث دارای اهمیت می باشد و لذا انتقال انرژی تشعشعی در محیط هایی که قابلیت صدور جذب و تفرق دارند در سالیان گذشته مورد توجه قرار گرفته است.
از طرف دیگر با توجه به رژیم جریان (جریان آرام یا مغشوش) جابجایی نیز امکان دارد به حالت های مختلف با توجه به رژیم جریان اتفاق بیافتد که مباحث مربوط به این مبحث به طور کامل در فصل آتی تشریح می گردد.
در ادامه تاریخچه مطالعات صورت گرفته توسط محققین و پژوهشگران مختلف در ارتباط با انتقال حرارت درون کانال های عمودی به طور اجمالی بیان می گردد.
در منطقه عسلویه كه در مجاورت میدان گازی پارس جنوبی قرار دارد، واحدهای متعدد و وسیع پالایشگاهی احداث گردیده اند. در صنایع نفت و پتروشیمی به علت نیاز شدید این صنایع به برق، در مجاورت واحد صنعتی یک نیروگاه احداث می گردد تا مستقل از شبكه به تولید برق مطمئن وپایدار بپردازد. در واحدهای پالایشگاهی به علت سهولت نصب و راه اندازی و بهره برداری از نیروگاه های گازی استفاده می شود به گونه ای كه این امر در منطقه عسلویه كاملا مشهود است.لذا دراین پروژه با توجه به تعدد نیرگاه های گازی در منطقه عسلویه، این منطقه به عنوان مبنای تحقیق در نظر گرفته شده است.
در نیروگاه گازی، اكثر گاز ورودی به توربین كه مولد قدرت است هوای محیط است. لذا باید ابتدا تاثیر مشخصات هوای محیط بر كارایی توربین گاز مشخص شود. سپس با توجه به چگونگی تاثیر مشخصات هوای محیط و سایر موارد بر كارایی نیرو گاه گازی، به بررسی روش های افزایش توان وبازدهی نیروگاه پرداخته شود.
فصل اول: کلیات
1-1) هدف
اكثر نیروگاه هایی كه در كشور احداث شده اند یا در حال احداث می باشند، نیروگاه گازی می باشند. از معایب نیروگاه گازی ساده، وابستگی آن به شرایط محیطی و اتلاف حرارت بس یار زیاد ناشی از دمای بالای گازهای خروجی از توربین را می توان نامبرد. در این پروژه با توجه به تعدد نیروگاه های گازی در منطقه عسلویه این منطقه جهت تحقیق انتخاب شده است.
در این پروژه هدف بر این است كه بدون تداخل با اجزاء سیكل اصلی نیرو گاه های گازی در كشورمان (توربین، كمپرسور و محفظه احتراق) روش هایی جهت بهینه سازی نیروگاه ارائه شود تا بتوان با ساختار موجود توان و بازدهی نیروگاه گازی را افزایش داد.
2-1) پیشینه تحقیق
روش های مختلفی جهت بهینه سازی نیروگاه های و بالابردن كارایی آن در كتب و مقالات علمی مختلف ارائه شده است. در بخش مراجع به بخشی از این كتب و مقالات اشاره شده است. اهم این روشها شامل:
خنك كردن هوای ورودی به كمپرسور، دو مرحله ای كردن كمپرسور و استفاده از خنك كن هوا بین كمپرسورها، افزایش دبی جرمی گاز ورودی به توربین بوسیله تز ریق هوای فشرده، آب یا بخار با فشار مناسب به محفظه احتراق، گرم كردن گاز بوسیله گاز خروجی از توربین قبل از ورود به محفظه احتراق و تولید بخار توسط بویلر بازیافت حرارت كه در مسیر گازهای خروجی از توربین نصب شده می باشند. برخی از این روشها در عمل به علت پیچیده كردن سیكل نیروگاه به ندرت استفاده شده اند.
3-1) روش كار و تحقیق
فرایند صورت گرفته در انجام این پروژه به شرح ذیل می باشد:
– جست و جوی كتابها و مقالات علمی معتبر.
– انتخاب روش هایی جهت بالابردن كارایی نیروگاه بطوریكه این روشها قابلیت اجرایی داشته و حداقل تداخل با سیكل نیروگاه های موجود كشور را داشته باشند.
– انجام محاسبات نیروگاه ساده گازی و شناخت عوامل مؤثر در كارایی آن.
– نوشتن كد كامپیوتری برای محاسباتی كه دارای حل تحلیلی نمی باشند.
– اعمال روش های اصلاحی به نیروگاه گازی ساده و محاسبات مربوطه.
– بحث و نتیجه گیری.
خطوط لوله انتقال گاز عموما، دارای طول زیادی هستند. و افت فشار و به حداقل رساندن آن یكی مسائل مهم در طراحی خطوط انتقال گاز می باشند. عموما خطوط گاز در ابتدای خط لوله دارای درجه حرارت یكسانی با محیط نمی باشند، به خصوص در ایستگاه های تقویت فشار گاز كه در كمپرسور دمای گاز بالا می رود، لكن با انتقال گاز، دمای گاز به دمای محیط نزدیک می شود.بنابراین انتقال حرارت وجود خواهد داشت و باید اثر آن بر افت فشار جریان گاز مشخص شود.
افت فشار در خطوط انتقال یک عامل ناخواسته می باشد وباعث پائین آمدن بازدهی كلی انتقال گاز می شود. یكی از روش های موجود جهت به حداقل رساندن افت فشار استفاده از خنك كننده جهت رساندن دمای گاز به دمای محیط در ایستگاه های تقویت فشار گاز می باشد.
در امكان سنجی اولیه احداث خطوط لوله گاز باید با در نظر گرفتن اختلاف حرارت دمای محیط با جریان گاز و انتقال حرارت ناشی از آن این عامل در طراحی به گونه ای در نظر گرفته شود كه در كاهش افت فشار نقش داشته باشد.
فصل اول: جریان گاز در خطوط لوله با گرمایش یا سرمایش
1-1) ملاحظات مقدماتی
جریان تراكم پذیر به جریانی اطلاق می گردد كه درآن تغییرات جرم حجمی در جریان بوقوع می پیوندد. این تغییرات در بسیاری موارد ناشی از تغییر فشار در خط لوله می باشد. از آنجایی كه تغییر چگالی معمولا با تغییر دما و همچنین انتقال گرما همراه است به استفاده از ترمودینامیك، به خصوص قانون دوم ترمودینامیک نیازمند خواهیم بود.
جریان تراكم پذیر به شاخه های معمولی كه سیالات تراكم ناپذیر مورد استفاده قرار می گیرند تقسیم می شود كه عبارتند از:
– جریان یک بعدی، دو بعدی و سه بعدی
– جریان پایا و نا پایا
– جریانهای چرخشی و بی چرخشی
علاوه بر این شاخه های مفید آشنا برای جریان تراكم پذیر رده بنده هایی اضافی زیر نیز وجود دارد: جریان تراكم پذیر فروصوتی ،جریان ترا صوتی،جریان فرا صوتی و جریان فوق صوتی.
لكن در مورد سیالات تراكم پذیر كه در آن سرعت حركت سیال تا سه دهم سرعت صوت باشد جریان را تراكم ناپذیر در نظر می گیریم. لذا در خطوط انتقال گاز به علت عدد ماخ بسیار پایین آن می توان جریان گاز را تراكم ناپذیر در نظر گرفت.
:
پالایشگاه ها از بزرگترین منابع تولید انرژی در جهان بشمار می روند. از طرف دیگر مصرف انرژی آنها نیز مقادیر قابل توجهی می باشد. بطوریکه در اقلب موارد عدم صرفه جویی در مصرف انرژی می تواند یک پالایشگاه را به یک بنگاه اقتصادی ضرر ده تبدیل کند. مدیریت
انرژی یکی از مهمترین نیازها جهت اعمال این صرفه جویی هاست. در این راستا بررسی کامل مبادی تولید و مصرف انرژی و بهینه سازی آنها از مسائل بسیار مهم می باشد. با توجه به مصرف بالای کوره ها، مدیریت صحیح یک کوره سبب استفاده بهینه از آن شده و در نهایت مصرف سوخت کوره کاهش می یابد و به همان میزان هزینه کاهش خواهد یافت. در پالایشگاه ها کوره های واحد تقطیر از جمله بزرگترین و پر مصرف ترین کوره های یک پالایشگاه است بطوریکه افزایش دمای پیش گرم کن حتی برای یک درجه سانتی گراد رقم قابل ملاحظه ای را در مصرف سوخت سبب خواهد گردید.
پالایشگاه تبریز در زمینی به مساحت تقریبی 2 کیلومتر مربع در کیلومتر 15 جاده تبریز / مراغه احداث گردیده است .این پالایشگاه در سال 1353 توسط شرکت UOP طراحی شد و ساخت و نصب دستگاه ها توسط شرکت ایتالیائی SNAM PROGECTTIS و با همکاری عده کثیری از تکنیسن ها و کارگران ماهر ایرانی انجام پذیرفته است. ظرفیت اسمی پالایشگاه تبریز به هنگام طراحی 80000 بشکه در روز در نظر گرفته شده بود که به همین نحو اجراء و کل پروژه در آبان ماه 1357 تکمیل و بهره برداری از آن آغاز گردید.
با اوج گیری انقلاب شکوهمند اسلامی، مهندسین و کارکنان انقلابی پالایشگاه در اجرای فرمان رهبر کبیر و بنیانگذار جمهوری اسلامی حضرت امام خمینی (ره) با منظور داشتن کلیه نکات ایمنی فعالیت پالایشگاه را متوقف و دستجمعی به امت انقلابی پیوسته و اعلام
اعتصاب نمودند. همین کار کنان متعهد بلافاصله پس از پیروزی قطعی انقلاب مقدس اسلامی به فرمان امام راحل لبیک گفته و با نهایت دقت و مهارت در اسرع وقت، پالایشگاه را راه اندازی نمودند.
طی هشت سال دفاع مقدس، پالایشگاه تبریز به علت اهمیت موقعیت نظامی و سیاسی، همچنین نزدیک بودن به مرز و در نتیجه قابل دسترس بودن بیشتر هواپیماهای دشمن، مکررا مورد تهدید حملات هوائی قرار گرفته، خصوصا در سالهای آخر جنگ تحمیلی کمتر روز و شبی اتفاق می افتاد که چندین نوبت آژیر حمله هوائی در پالایشگاه به صدا در نیاید و طی این مدت، ده ها بار توسط هواپیماهای متجاوز دشمن بعثی در معرض تهاجم قرار گرفته که 13 بار با شدیدترین وجه بمباران گردید. در این راست ا پالایشگاه تبریز 29 نفر از بهترین فرزندان خود ر ا به درجه رفیع شهادت به اسلام و انقلاب تقدیم نموده و عده بیشتری مجروح و معلول به افتخار کسب عنوان جانبازی نائل آمدند.
کارکنان مؤمن و متعهد پالایشگاه در چنین شرایط مخاطره آمیز و تحت شدیدترین فشارهای روحی و روانی و با تحمل مشقات فراوان در اثر ایمان راسخ و به برکت انفاس قدسیه حضرت امام راحل موفق شده اند علاوه بر انجام وظایف روزمره به نحو احسن بلافاصله پس از هر حمله هوائی در اسرع وقت به بازسازی دستگاه های آسیب دیده پرداخته و فعالیت مستمر پالایشگاه را تحقق بخشند که این اقدامات سریع و مؤثر خاری بود در چشم دشمنان اسلام و این مرز و بوم.
به موازات این فعالیتهای قهرمانانه و ایثارگرانه،در توسعه فعالیت پالایشگاه در کلیه زمینه ها، علیرغم وجود فشارهای اقتصادی و سیاسی استکبار جهانی و جنگ تحمیلی هشت ساله، کارکنان پالایشگاه تبریز با بهره گیری از توانایی علمی و کارائی خود حماسه آفرینی ها کرده اندکه به عنوان نمونه می توان اجرای موفقیت آمیز طرح ازدیاد ظرفیت پالایشگاه را در سه مرحله نام برد که این پروژه به دست کارکنان پالایشگاه با رعایت اصل صرفه جوئی در هزینه و وقت انجام یافت که از نظر عوامل یادشده قبل مقایسه با
اجرای طرحهای انجام یافته توسط خارجیان صاحب نام در این صنعت نبوده و ورقی زرین بر صفحات دفتر پر افتخار این پالایشگاه افزوده که نتیجه این تلاش همه جانبه ازدیاد ظرفیت از 80000 بشکه در روز قبل از جنگ تحمیلی به 115000 بشکه در روز در حال حاضر است.