کشف دانش و داده کاوی یک حوزه جدید میان رشته ای و در حال رشد است که حوزه های مختلفی همچون پایگاه داده، آمار، یادگیری ماشین و سایر زمینه های مرتبط را با هم تلفیق کرده تا اطلاعات و دانش ارزشمند نهفته در حجم بزرگی از داده ها را استخراج کند.هدف کشف دانش و داده کاوی یافتن الگوها در پایگاه داده است که در میان حجم عظیمی از داده ها مخفی هستند]1[ .کشف دانش شامل مراحل متعددی است که در این تحقیق به مرحله پیش پردازش توجه میکنیم.
مرحله آماده سازی داده ها مهم ترین و زمانبرترین مرحله در پروژه های داده کاوی است.از آنجا که داده ها در این پروژه ها ورودی پروژه هستند هر قدر این ورودی دقیق تر باشد، خروجی کار دقیق تر خواهد بود.یعنی ما از پدیده “ورودی نامناسب، خروجی نامناسب ” دور میشویم]1[.داده های خام معمولا دچار مشکلاتی مانند نویز، داده پرت، تغییرات در نمونه برداری هستند و استفاده از آنها به همین صورت موجب تضعیف نتایج مورد انتظار میشود.بنابراین باید از روشی برای بهبود نتایج استفاده کرد.پیش پردازش داده ها جهت بهبود کیفیت داده های واقعی برای داده کاوی لازم است.بنابراین پردازش اولیه ای مورد نیاز است تا مقادیر مفقوده، انحرافات و مسائلی از این دست را در داده های اولیه بیابد. پیش پردازش داده ها شامل همه تبدیلاتی است که بر روی داده های خام صورت میگیرد وآنها را به صورتی در میآورد که برای پردازشهای بعدی نظیر استفاده در دسته بندی و خوشه بندی، ساده تر و موثرتر میسازد.
در حال حاضر سازمانها نیاز دارند تا بتوانند داده ها را به صورت کاراتر دسته بندی کنند و از تحلیل نتایج آن برای بهبود روند پیشرفت کسب و کار استفاده نمایند.ممکن است که داده های در دسترس ، داده هایی مبهم و مغشوش باشند و یا کلاس های داده نامتوازن باشند. بنابراین نیاز به پیش پردازش دقیق داده ها رو به افزایش است. برای پاسخ به این نیاز رو به افزایش ، افراد همواره سعی در ارائه روش های نوین و موثرتری دارند.
1-2بیان مساله
هرچند که روش های مختلفی برای پیش پردازش داده ها موجود است ولی عملکرد و دقت این روش ها متفاوت است و تلاش در جهت ارائه روشی کارامد امری ضروری است.با توجه به اهمیت داده ها در جهان کنونی و افزایش حجم داده ها مساله پیش پردازش مناسب داده ها، بخصوص داده های نامتوازن یک چالش به نظر میرسد.اغلب روش های موجود در پیش پردازش داده های ناتوازن به سمت کلاس اکثریت تمایل دارند و این امر باعث می شود که داده های کلاس اقلیت به صورت نویز در نظر گرفته شود.
همانطور که پیش از این نیز گفته شد برای دست یابی به نتایج مطلوب در داده کاوی نیاز به پیش پردازش داده ها داریم.میتوان ادعا کرد که اگر مرحله آماده سازی داده ها به خوبی صورت نپذیرد، نتایجی بدست می آید که نمی تواند مورد استفاده قرار گیرد و ممکن است که هزینه و زمان به کار رفته برای دست یابی به نتیجه موثر هدر رود و نتایج حاصل به دلیل عدم پیش پردازش مناسب داده غیر قابل استفاده و نادرست باشد.
اخیراً مشكل نامتوازن بودن كلاسها مورد توجه محققان در زمینه ی داده كاوی قرار گرفته است. در موارد متعددی كلاسی كه از نقطه نظر دامنه ی كاربردی اهمیت زیادی دارد(كلاس اصلی) شامل تعداد حالات كمتری نسبت به كلاسی است كه كلاس اكثریت میباشد. این مجموعه ی داده ها نامتوازن نامیده می شود. رویكرد سنتی داده كاوی توانایی خوبی برای پیش بینی نمونه های اقلیت كه مورد توجه است ندارند. متأسفانه در اكثر موارد داده های واقعی دارای این خصوصیت هستند. به عنوان مثال در تشخیص بیماریهای نادر، حملات شبكه، متنكاوی و … معمولاً توزیع داده ها نامتوازن می باشد.
در واقع مساله این است که چگونه میتوان داده های نامتوازن را به گونه ای پیش پردازش کرد که در خوشه های مناسب و درست طبقه بندی شوند.بنابراین مساله این تحقیق ارائه روشی جهت پیش پردازش داده های نا متوازن است به گونه ای که کارایی و دقت آن در مقایسه با روش های دیگر بیشتر باشد.
در روش ارائه شده در این تحقیق برای ارتقای روش ماشین بردار پشتیبان از تکنیک حداقل مربعات با متر اقلیدسی استفاده نمودیم.این روش بهبود یافته را M-SVM مینامیم.بنابراین مساله را بدین شکل طرح می نماییم، چگونه میتوان در روش پیش پردازش داده های نامتوازن به دقت بالاتری دست یافت و از پیش پردازش صحیح داده برای دست یابی به نتایج صحیح در حوزه کاربردی استفاده نمود.از انجا که داده های متفاوتی وجود دارد ما پیش پردازش بر روی مجموعه داده های نامتوازن را انتحاب کردیم.
3-1- اهداف تحقیق
هدف از این تحقیق ارائه راهکاری به منظور افزایش دقت متعادل سازی داده و غلبه بر مشکل عدم توازن کلاس است.سعی کرده ایم تا متعادل سازی داده که در مرحله پیش پردازش داده صورت میگیرد باعث بهبود نتایج طبقه بندی نمونه ها شود.بدین منظور اثربخشی و کارایی روش ارائه شده با سایر روش های موجود مورد مقایسه و ارزیابی قرار میگیرد.امید است که نتایج الگوریتم نهایی امیدوار کننده باشد و نشان دهنده پیشرفت الگوریتم باشد.این تحقیق بر اساس نیاز به دسته بندی دقیق داده ها و استفاده از تحلیل نتایج داده ها در بهبود شرایط مرجع مورد استفاده کننده داده ها شکل گرفته است.
ممکن است هنگام انتقال از فایل اصلی به داخل سایت بعضی متون به هم بریزد یا بعضی نمادها و اشکال درج نشود ولی در فایل دانلودی همه چیز مرتب و کامل و با فرمت ورد موجود است
متن کامل را می توانید دانلود نمائید
چون فقط تکه هایی از متن پایان نامه در این صفحه درج شده (به طور نمونه)
ولی در فایل دانلودی متن کامل پایان نامه
با فرمت ورد word که قابل ویرایش و کپی کردن می باشند
موجود است