سیستمهای پیشنهاددهنده در تجارت سیار از جمله موضوعات پراهمیت سالهای اخیر بوده اند که با ظهور تکنولوژیهای بیسیم و تسهیل حرکت تجارت الکترونیکی از محیطهای سیمی به سوی بیسیم مورد توجه قرارگرفتهاند. تجارت سیار بهمعنای انجام فعالیتهای تجارتالکترونیک از طریق محیطهای بیسیم، به طورخاص اینترنت بیسیم، و وسایل دستی سیار میباشد که با پیدایش تکنولوژی بیسیم در عرصه اینترنت و استفاده روزافزون از وسایل سیار توجه به آن رو به افزایش است[1,2]. به کاربردهای تجارت سیار دو خصوصیت ویژه تحرک[1] و دسترسی وسیع[2] نسبت دادهشدهاست[1,3] که اولین خصوصیت بر امکان از بین رفتن محدودیتهای مکانی و دومین خصوصیت بر امکان از بین رفتن محدودیتهای زمانی در استفاده کاربران از خدمات این نوع کاربردها تاکید دارد[1,3,4,5]. اینکه کاربران برای انجام فعالیت هایی چون بانکداری الکترونیکی یا خرید الکترونیکی محصولات، قادر به جایگزینی وسایلی چون تلفنهای سیار و همراههای شخصی دیجیتال (پی.دی.اِی)[3] بهجای کامپیوترهای شخصی باشند، تسهیلات زیادی را برای آنها و فرصتهای جدیدی را نیز برای کسب وکارها فراهمخواهدکرد و لزوم توجه به این عرصه را برای محققان نمایان میسازد[1,3].
اما پیادهسازی سیستمهای پیشنهاددهنده در محیطهای سیار بدون درنظرگرفتن پارامترهای تاثیرگذار در این محیط چندان مناسبنخواهدبود. مجموعه این پارامترها، اطلاعات زمینه را تشکیل می دهند [6].
عملکرد سیستمهای پیشنهاددهنده معرفی منابع مورد نیاز کاربران به آنهاست. این منابع میتوانند مواردی مانند اطلاعات خاص مورد نیاز کاربر و یا کالاهایی مانند کتاب یا فیلم مورد علاقه یک کاربر را از میان انبوه کالاهایی که کاربر با اطلاعات آنها روبروست، دربرگیرند[7,8,9]. درسیستمهای پیشنهاددهنده، سه مجموعه داده اصلی یعنی مجموعه کاربران ©، مجموعه اقلام قابل توصیه(S) (مانند کتاب، فیلم، موسیقی و غیره) و مجموعه داده هایی که رابطه میان دو مجموعه قبلی را تعریف می کنند، وجوددارند. مجموعهS می تواند شامل صدها، هزارها و حتی میلیونها کالا در کاربردهای مختلف بوده و به طور مشابه مجموعه C نیز می تواند چنین وضعیتی را داشته باشد. ارتباط میان دو مجموعهC و S مبتنی بر ساختار امتیازگذاری است که میزان مفید بودن یا مورد علاقه بودن کالا را برای کاربر مشخص می کند. این ارتباط با تابعی تحت عنوان تابع سودمندی، u، به صورت رابطه زیر تعریف می شود.
که در آن Ratings، مجموعه مرتبی مانند اعداد صحیح غیرمنفی یا مجموعه اعداد حقیقی در بازهای معین میباشد.
در سیستمهای پیشنهاددهنده مقادیر u معمولاً فقط بر روی زیر مجموعه ای از دامنه C×S تعریفشدهاست و نه بر تمام آن و قسمت های نامشخص این دامنه را باید با استفاده از داده های موجود بهصورت تخمینی مشخص نمود. هدف نهایی سیستمهای توصیهکننده با ارائه پیشنهاد اقلام با بالاترین امتیازات تخمینی به کاربران محقق می شود به طوریکه برای هر کاربر ، اقلام با حداکثر میزان سودمندی انتخاب و معرفی میگردد[7].
تا به امروز روشهای پیشنهاددهی زیادی ارائه شدهاست که این روشها و متدولوژیها در دستهبندیهای زیر قرار میگیرند[7,9,10]:
– مبتنی بر محتوا[1] : در این گروه از روشها، عمل پیشنهاددهی با بهره گرفتن از یافتن اقلامی انجام میگیرد که بیشترین تشابه را با اقلامی داشته باشند که درگذشته موردعلاقه کاربر بوده اند. به عبارت دیگر u(c,s)، سودمندی کالای s برای کاربر c، بر اساس کلیه مقادیر موجود u(c,si) هایی که si مشابه به s بوده و si جزء کالاهای مورد علاقه کاربر هستند، برآورد می شود.
– فیلترسازی مشارکتی : در این گروه از روشها، عمل پیشنهاددهی با بهره گرفتن از یافتن اقلامی انجام میگیرد که مورد علاقه کاربران با سلایق مشابه کاربر بوده اند. کاربران با سلایق مشابه یعنی کاربرانی که اقلام یکسانی را امتیازدهی مشابه کرده باشند. بهعبارت دیگر u (c, s) بر اساس مقادیر موجودu(cj ,s) بدست می آید که cj کاربران مشابه با c میباشند.
– مدل ترکیبی[2]: روشهایی که دو روش مبتنیبرمحتوا و فیلترسازی مشارکتی را ترکیب می کنند و به این صورت از مزایای هر دو روش در جهت شناسایی و معرفی کالاها بهره میگیرند.
در نگاهی دیگر روشهای پیشنهاددهی، اعم از مبتنی بر محتوا و فیلترسازی مشارکتی به دو دسته روشهای مبتنی بر حافظه[3]و مبتنی بر مدل[4] تقسیم میشوند. درمقایسه با الگوریتمهای مبتنی بر حافظه، الگوریتمهای مبتنی بر مدل، با بهره گرفتن از روشهای یادگیری ماشین[5] مدلی را با بهره گرفتن از مجموعه امتیازات موجود ایجاد کرده و از آن بهمنظور پیشگویی امتیازات استفاده می کنند[7,10,11].
1-2 موضوع تحقیق
موضوع این تحقیق، ارائه روشی برای پیشنهاددهی آگاه از زمینه در تجارت سیار میباشد. با پیدایش تکنولوژی بیسیم در عرصه اینترنت و استفاده روزافزون از وسایل سیار، پیادهسازی سیستمهای پیشنهاددهنده در محیطهای سیار با توجه به محدودیتهای خاص آن چون هزینهبر بودن زمان اتصال و تبادل داده، محدودیت پهنای باند، کیفیت پایین اتصال و محدودیتهای ورودی و خروجی وسایل سیار، نیاز به بررسی بیشتر را در جهت ارائه اطلاعات مرتبطتر و شخصیسازیشدهتر میطلبد. بررسی تاثیر اطلاعات زمینه بهعنوان شرایط و محیط دربرگیرنده کاربر و بهعنوان اطلاعاتی که بر فرایند تصمیم گیری وی تاثیرگذارند، برخروجی اینگونه کاربردها، مسالهای است که در این تحقیق مورد بررسی قرار گرفتهاست.
1-3 پیشینه تحقیق
ظهور تکنولوژیهای بیسیم و استفاده رو بهافزایش وسایل سیار، فرصتهای زیادی را پیش روی کاربردهای تجارت الکترونیک قراردادهاست. با توجه به محدودیتهای خاص محیطهای سیار، ارائه اطلاعات بهصورت شخصیسازیشدهتر و سفارشیشدهتر یکی از اهداف مهم کاربردهای تجارت سیار است. درنظرگرفتن اطلاعات زمینه بهعنوان شرایط و محیط دربرگیرنده کاربر و بهعنوان اطلاعاتی که بر فرایند تصمیم گیری وی تاثیرگذارند، در ارائه خروجی اینگونه کاربردها از جمله مواردی است که میتوان از آن در جهت ارائه اطلاعات مرتبطتر به کاربران بهره گرفت.
سیستمهای پیشنهاددهنده همواره از جمله موضوعات پر اهمیت در حوزه تجارت الکترونیک بوده است. سیستمهای پیشنهاددهنده سیار آگاه از زمینه در آغاز راه هستند. دسته مهمی از سیستمهای آگاه از زمینه را سیستمهای آگاه از مکان تشکیل میدهند. یانگ، چنگ، و دایا[12]، یک سیستم پیشنهاددهنده آگاه از مکان برای محیطهای سیار ارائهدادهاند که هدف آن توصیه وبسایت فروشندگان با در نظرگرفتن علایق و پیشفرضهای مشتری و همچنین فاصله مکانی وی با مکان فیزیکی مشخصشده در وبسایتها میباشد. در روش مزبور، دو فاکتور فوق به طور جداگانه محاسبه شده و سپس بر اساس ترکیبی از آنها به پیشنهاد وبسایتها پرداخته می شود. یکی دیگر از این نوع سیستمها پروکسیمو[13] است که یک سیستم پیشنهاددهنده آگاه از مکان برای محیطهای داخلی چون موزهها و گالریها است. این سیستم بر اساس علایق و پیشفرضهای کاربر به پیشنهاد اقلام پرداخته و مکان اقلام را بر روی نقشهای بر روی وسیله همراه کاربر نمایش میدهد.
استفاده از سایر اطلاعات زمینهای علاوهبر مکان نیز مورد توجه توسعهدهندگان این نوع سیستمها قرارگرفتهاست. پخش موسیقی یکی از حوزه های کاربردی پرمصرف در میان کاربران سیار میباشد و به همین دلیل استفاده از پیشنهاددهندههای آگاه از زمینه در این حوزه مورد توجه قرارگرفته است. از آنجایی که تاثیر موسیقی بر روح و جسم انسان ثابت شدهاست، انتخاب موسیقی با توجه به شرایط می تواند وضعیت دوستداشتنیتری را فراهمکند و افراد را در انجام فعالیتهایشان یاری رساند. مثلاً موسیقی می تواند کارایی فرد را در حال انجام تمرینات فیزیکی بهبود بخشد، اضطراب را کاهش دهد و میزان یادگیری را بهبود بخشد. [14] یکی از تحقیقاتی است که در این حوزه ارائهشدهاست. در این تحقیق علاوهبر بررسی روشهای فیلترسازی مبتنیبر زمینه و مرور پیشنهاددهندههای سیار آگاه از زمینه موسیقی، پیشنهاددهنده سیار آگاه از زمینه AndroMedia ارائه شدهاست. پیشنهادات با توجه به زمینه جاری کاربر که با بهره گرفتن از حسگرهای بلوتوث در سمت برنامه مشتری بدست میآیند و همچنین سلایق کاربر تهیه میشوند. همچنین در مرجع [15] نیز پیشنهاددهی آگاه از زمینه موسیقی در محیطهای سیار مورد بررسی قرارگرفتهاست. در تحقیق پارک، یو و چو[16] نیز یک سیستم آگاه از زمینه موسیقی با بهره گرفتن از شبکه های بیزین فازی و تئوری سودمندی ارائهشدهاست. فرایند پیشنهاددهی تحلیل شده و سودمندی آن مورد ارزیابی قرارگرفتهاست.
گردشگری نیز یکی از حوزه های جذاب برای پیادهسازی پیشنهاددهندههای سیار آگاه از زمینه میباشد. امروزه گردشگران انتظار دارند که دسترسی شخصی به اطلاعات گردشگری در هر زمان، هر مکان و در هر شرایطی را داشتهباشند. راهنماهای گردشگری سیار، چنین اطلاعاتی را در اختیار کاربران قرار میدهند. در مرجع [17] خلاصهای از کارهای انجامشده در زمینه راهنماهای گردشگری سیار تحت وب انجام گرفتهاست. همچنین در مرجع[18] تاثیر آگاهی از زمینه در سیستمهای اطلاعاتی گردشگری سیار مورد بررسی قرار گرفتهاست. در [19] نیز یک کاربرد توریستی سیار با نام COMPASS ارائهشدهاست. در این تحقیق به بررسی ترکیب آگاهی از زمینه با سیستمهای پیشنهاددهنده پرداخته شدهاست. پارامترهای زمینهای این تحقیق شامل زمان و مکان میباشند. این سیستم خدمات خود را با نیازهای کاربر که بر اساس علایق و زمینه جاری وی مشخص می شود، تطبیق میدهد.
در [20] نیز یک سیستم پیشنهاددهنده تصاویر با بهره گرفتن از یک روش داده کاوی که ترکیبی از روشهای مبتنیبرمحتوا و مبتنیبر اطلاعات زمینه میباشد ارائهشدهاست. اطلاعات زمینه استفادهشده در این تحقیق شامل زمان و مکان هستند. لی، ونگ، جنگ و دای[21]، یک سیستم توصیهکننده آگاه از زمینه برای کاربردهای تجارت سیار ارائهدادهاند. در این تحقیق از مدل چندبعدی موجود در سیستمهای OLAP برای نمایش فضای توصیهگری و از روش مبتنی بر کاهش فضا بهمنظور کاهش فضای
توصیهگری به فضای دوبعدی و انجام عملیات توصیهگری در فضای مزبور استفادهکرده اند.
استفاده از آنتولوژی و وب معنایی در سیستمهای پیشنهاددهنده سیار آگاه از زمینه نیز در تحقیقات بسیاری مورد توجهقرارگرفتهاست[22,23,24]. تکنولوژیهای وب معنایی، دسترسی هوشمند و کارا به اطلاعات را بهبود بخشیدهاند. از آنتولوژی میتوان برای مدلسازی زمینه و همچنین برای مدلسازی ارتباط زمینه با سایر مجموعهداده ها استفادهنمود. در تحقیق حاضر، یک روش جدید پیشنهاددهی آگاه از زمینه در تجارت سیار ارائهشدهاست.
[1] Content-Based
[2] Hybrid Model
[3] Memory-Based
[4] Model-Based
[5] Machine learning
[1] Mobility
[2] Broad reach
[3] Personal Digital Assistant (i.e. PDA)
ممکن است هنگام انتقال از فایل اصلی به داخل سایت بعضی متون به هم بریزد یا بعضی نمادها و اشکال درج نشود ولی در فایل دانلودی همه چیز مرتب و کامل و با فرمت ورد موجود است
متن کامل را می توانید دانلود نمائید
چون فقط تکه هایی از متن پایان نامه در این صفحه درج شده (به طور نمونه)
ولی در فایل دانلودی متن کامل پایان نامه
با فرمت ورد word که قابل ویرایش و کپی کردن می باشند
موجود است