انگیزه پژوهش:
یکی از عوامل مهم در پهنه اینترنت امروزه تقاضای استفاده از تصاویر و ویدئو است. اخیرا استفاده از کاربردهای چند رسانه ای در وسایل دستی و قابل حمل پهنای باند قابل دسترس بی سیم را محدود ساخته است. پهنای باند حتی در ارتباطات جدید هم محدود است. فشرده ساز تصویر JPEG که امروزه به طور گسترده ای به کار می رود، طی چند سال اخیر کامل شده است. تبدیل موجک که اساس تکنیک هایی مانند JPEG 2000 در فشرده سازی تصویر است برتری های قابل توجهی نسبت به روش های قراردادی، از نظر رنج فشرده سازی دارد. امروزه پیاده سازی ها با تبدیل موجک هنوز در حال توسعه و تکامل هستند. پیاده سازی هایی با سخت افزار موثر و انرژی انعطاف پذیر که می تواند توابع چند رسانه ای برای پردازش تصویر، رمزگذاری و رمزبرداری را در دسترس قرار دهد. و به خصوص برای دستگاه های بی سیم قابل حمل دستی بسیار مهم هستند.
پیش زمینه
فشرده سازی اطلاعات کامپیوتری یک تکنولوژی توانمند و قوی است، که نقش بسیار مهمی را در امر اطلاعات بازی می کند. در میان انواع مختلف دیتاها، که به طور مشترک بر روی شبکه منتقل می شوند دیتاهای تصویری و ویدئویی توده ای از ترافیک بیت ها را تشکیل می دهند برای مثال برآوردهای جاری نشان می دهد که بالغ بر 40% از حجم اینترنت را دیتاهای تصویری تشکیل می دهند ترکیب رشد انفجاری ارزش دیتاهای تصویری و ویدئویی همراه با موانع تکنولوژیکی تحویل فشرده سازی را کاری باارزش می سازد. در میان چندین استاندارد فشرده سازی قابل دسترس، امروزه استفاده از استاندارد فشرده سازی تصویر JPEG گسترش زیادی یافته است. JPEG از تبدیل کسینوسی گسسته استفاده می کند. به طوری که تبدیل برای بلوک های 8*8 دیتای تصویر به کار برده می شود. استاندارد جدیدتر JPEG2000 بر پایه تبدیل موجک، تحلیلی چند دقتی (رزلوشنی) از تصویر عرضه می کند که با مشخصات سطح پایین بینایی انسان بهترین تطابق را دارد. تبدیل کسینوسی گسسته ضرورتا یکتا است. اما تبدیل موجک ممکن است چندین تحقق داشته باشد. تبدیل موجک اصول مناسبتری برای نمایش تصاویر به ما عرضه می کند، به این دلیل که می تواند اطلاعات را در مقیاس های گوناگون با تغییر کنتراست محلی، به خوبی ساختار مقیاس بزرگ نمایش دهد و بنابراین برای دیتاهای تصویری مناسبتر است.
آرایه های گیتی قابل برنامه ریزی میدانی (FPGAS) به سرعت نمونه طرح را عرضه می کنند. FPGA دستگاه هایی هستند، که می توانند بدون تحمیل هزینه های مهندسی غیر قابل باگشت که نوعا در ساخت IC مرسوم است، برای به دست آوردن توابع مختلف برنامه ریزی شوند. همچنین با بهره گرفتن از این قطعات مشکلات خطایابی و سیم بندی مدارهای آزمایشگاهی بسیار کمتر می شود، و طراحی قابل حمل می شوند. در این کار، معماری تبدیل موجک روی سخت افزار FPGA با قابلیت تغییر ساختار اجرا می شود پایه کار روی FPGA از نوع xilinx است. طرح بر پایه اجرا چند سطح تبدیل گسسته موجک (DWT) است در طراحی xilinx virtex FPGA به کار می رود.
پیاده سازی طرح می تواند برای عملکرد به صورت پردازشگر کمکی برای فشرده سازی و یا حتی به صورت بخشی از الگوریتم برای کاربرد در دستگاه های تلفن همراه استفاده شود اما یک اشکال FPGA، ناشی از بلوک های قابل پیکربندی درشت است. همچنین طرح FPGA اغلب در ترم های فضا و زمان مانند یک طرح IC نیست.
:
موتورهای PMDC (جریان مستقیم مغناطیس دائم) ساختمان ساده ای دارند و قیمت تمام شده آنها پایین است بعلاوه ابعاد آنها در مقایسه با موتورهای DC مشابه کوچکتر است و تولید آنها نیز آسان است. در نتیجه گزینه مناسبی برای تولید انبوه و استفاده در مصارف عمومی خصوصا صنعت خودرو هستند. از این رو تحقیق بر روی طراحی، بهینه سازی این موتورها صرفه اقتصادی مناسبی را ایجاد می کند. یکی از روش های تحقیق بر روی موتورها و تحلیل آنها، روش اجزاء محدود است که تاکنون تحقیقات و مقالات بسیاری در رابطه با تحلیل اجزاء محدود موتورهای گوناگون (نظیر القایی، سنکرون، سنکرون مغناطیس دائم و…) صورت گرفته است ولی در رابطه با موتورهای PMDC کمتر کار شده است.
در فصل اول این پروژه روش اجزاء محدود برای حل مسائل الکترومغناطیس معرفی می شود که شامل روابط و اصول تئوری این روش است. یک نمونه موتور PMDC در فصل دوم معرفی می شود و ساختمان و عملکرد آن تشریح می گردد. فصل سوم شامل نحوه مدلسازی (دوبعدی) هندسی و المان محدود موتور و راهنمای استفاده از امکانات نرم افزار ANSYS جهت تحلیل مغناطیسی و حرارتی می باشد. فصل چهارم مربوط به تحلیل مغناطیسی است که در آن، ابتدا یک مدار مغناطیسی ساده به دو روش فرمولی و اجزاء محدود حل و نتایج آن مقایسه می شود و سپس تحلیل اجزاء محدود موتور مورد بررسی در حالات بی باری و بارهای مختلف انجام می شود. همچنین گشتاور موتور به صورت محاسباتی تخمین زده می شود و با مقدار واقعی مقایسه می گردد. در خاتمه پیشنهاداتی جهت بهبود موتور ارائه و بررسی می شود. فصل پنجم مربوط به تحلیل حرارتی است که شامل اصول و روابط انتقال حرارت (به صورت عمومی و در موتور) و بررسی مدار معادل حرارتی موتور است. همچنین تحلیل اجزاء محدود یک مدل حرارتی ساده و مقایسه با نتایج فرمولی در ادامه می آید و در خاتمه تحلیل حرارتی موتور مورد بررسی جهت تعیین درجه حرارت نقاط مختلف آن انجام می شود. فصل ششم شامل جمع بندی و نتیجه گیری از مطالب و ارائه پیشنهادات می باشد.
نرم افزارهای متنوعی نظیر ANSYS و NASTRAN و ABAQUS و COSMOS جهت تحلیل اجزاء محدود وجود دارد. تحقیق حاضر با بهره گرفتن از ویرایش 5.4 نرم افزار ANSYS صورت گرفته است. اگرچه در حال حاضر نسخه های جدیدتر نیز وجود دارد ولی به سبب اطمینان از نتایج آن، این نسخه انتخاب شد.
:
با رشد روزافزون مصرف، سیستم های انتقال انرژی با بحران محدودیت های انتقال توان مواجه هستند. این محدودیت ها عملا به خاطر حفظ پایداری و تامین سطح مجاز ولتاژ به وجود می آیند. بنابراین ظرفیت بهره برداری عملی خطوط انتقال بسیار کمتر از ظرفیت واقعی خطوط که همان حد حرارتی آنهاست می باشد. علاوه بر این مشکل دیگری که در انتقال توان سیستم های بهم پیوسته وجود دارد، عبور توان در مسیرهای ناخواسته است که به عنوان مشکل در حلقه شناخته شده است عبور این توان در مسیرهای ناخواسته، موجب افزایش غیرمجاز و عدم بهره برداری بهینه از سیستم خواهد شد. حالت ایده آل یک سیستم انتقال انرژی موقعی است که:
1- کنترل توان در مسیرهای خواسته انجام پذیرد.
2- ظرفیت بهره برداری کلیه خطوط در حد ظرفیت حرارتی قرار بگیرد.
با پیشرفت صنعت نیمه هادی ها و استفاده آنها در سیستم قدرت، مفهوم سیستم های انتقال انرژی انعطاف پذیر (FACTS) مطرح شده که بدون احداث خطوط جدید بتوان از ظرفیت واقعی سیستم انتقال استفاده کرد. پیشرفت اخیر صنعت الکترونیک قدرت در طراحی کلیدهای نیمه هادی با قابلیت خاموش شدن و استفاده از آن در مبدل های منبع ولتاژ قابل استفاده در سطح توان و ولتاژ سیستم قدرت، علاوه بر معرفی ادوات جدیدتر، تحولی در مفهوم FACTS به وجود آورد و سیستم های انتقال انرژی را بسیار کارآمدتر و موثرتر خواهد کرد.
یکی از این ادوات جدید FACTS که از تکنولوژی مبدل های منبع ولتاژ (VSC) در آنها استفاده شده است، کنترل کننده توان یکپارچه (UPFC) می باشد برای درک بهتر رفتار UPFC لازم است که نحوه عملکرد مبدل های منبع ولتاژ شود.
مبدل منبع ولتاژ (VSC)
شکل 1-1 نمودار مداری یک مبدل منبع ولتاژ را نشان می دهد که هر بازوی این مبدل از یک کلید GTO و یک دیود تشکیل شده است که به صورت معکوس با هم موازی شده اند تا عبور دو طرفه جریان امکان پذیر گردد.
طرف ac مبدل به شبکه و یا مصرف کننده ac و قسمت dc آن به یک خازن متصل می گردد. مشخصه برجسته مبدل های منبع ولتاژ این است که بدون نیاز به منبع انرژی ذخیره ای، (مثل خازن یا راکتور) می توانند توان راکتیو خازنی و یا سلفی شبکه را با طرح مناسب کلیدزنی جبران کنند. تذکر این نکته لازم است که خازن طرف dc هیچ نقشی در تهیه توان راکتیو مبدل ندارد و فقط برای تامین ولتاژ خروجی مبدل مورد استفاده قرار می گیرد و لذا قدرت نامی این خازن می تواند در مقایسه با ادوات تریستوری بسیار کوچک انتخاب گردد.
با انتخاب تدابیر کنترلی مناسب برای الگوی کلیدزنی می توان دامنه و فاز ولتاژ ac را به راحتی کنترل کرد. اگر فقط مولفه اول هارمونیک خروجی را در نظر بگیریم، یک مبدل منبع ولتاژ را می توان به صورت یک منبع ولتاژ مدل کرد که دامنه و فاز ولتاژ خروجی آن توسط الگوهای کلیدزنی به راحتی قابل کنترل است. شکل2-1 اتصال یک VSC را به شبکه نشان می دهد.
:
با عنایت به رشد رو به فزون صنعت حمل و نقل ریلی و توسعه راه آهن برقی در كشور نیاز به شناخت همه جانبی این صنعت می باشد ضمن اینكه یكی از بخش های مهم در این صنعت شبكه برق رسانی (Power Supply) جهت تامین برق مطمئن و ایمن می باشد در این سمینار سعی شده است كه با تجهیزات بخش DC در پست های تراكشن خصوصاً كلیدهای DC با سرعت بالا در سه فصل آشنا شویم.
در فصل اول هدف، پیشینیه تحقیق و روش كار و تحقیق مورد بررسی قرار گرفته كه تاكنون پروژه ای در این خصوص در كشور ما انجام نشده است. و در فصل دوم پست های تراكشن بطور اجمالی معرفی و با دیاگرام تك خطی، سیستم 750VDC و تجهیزات مختلف به كار رفته در بخش DC آشنا می شویم و در فصل سوم ساختمان ونحوه عملكرد كلیدها DC بطور كامل و جامع تشریح شده است.
و اصول حفاظتی و كنترلی شبكه های DC در فصل چهارم معرفی و در فصل پنجم سیستم نظارتی و كنترلی بر پست های تراكشن به همراه یک نمونه PLC به نام Sepcos و دستگاه اندازه گیری جریان و ولتاژ مطرح شده است.
فصل اول: كلیات
1-1- هدف
هدف این تحقیق بررسی و آشنایی با ساختمان، نحوه عملكرد و حفاظت كلیدهای DC و کاربرد آن در صنعت می باشد این كلیدها در پست های تراكشن در خطوط مترو كاربرد فراوان دارند.
2-1- پیشینه تحقیق
اصولاً چون سازندگان كلیدهای DC در دنیا محدود می باشد لذا اطلاعات در این خصوص بسیار كم می باشد و تحقیقات داخلی در زمینه كلیدهای DC مترو تاكنون انجام نشده است.
در خصوص ساختمان و نحوه عملكرد كلید مقاله خاصی در این موضوع وجود ندارد و بیشتر مقالات به موضوع حالت ها گذرا و تاثیر آن بر روی كلید می باشد و در خصوص حفاظت كلید و شبکه DC چندین مقاله وجود دارد كه مورد مطالعه قرار گرفته و در بخش حفاظت استفاده گردید.
3-1- روش كار و تحقیق
از آنجا كه تحقیق راجع به ساختمان، نحوه عملكرد و حفاظت كلیدهای DC در واقع باید شامل چند زیر تحقیق باشد با توجه به موضوع تحقیق ، زیر تحقیق های زیر استنباط گشت:
1- معرفی پست های تراكشن.
2- ساختمان و نحوه عملكرد كلیدهای DC
3- توابع حفاظتی و كنترلی كلیدهای DC
4- سیستم نظارتی و كنترلی پست های تراكشن
سپس سعی شده برای هر تحقیق منابع و مراجع لازم و كافی پیدا شود و سپس برای هر یك، گزارشی تهیه گردد. در فصل اول در خصوص آشنایی با پست های تراكشن می باشد و در فصل سوم و چهارم به ترتیب ساختمان، نحوه عملكرد كلیدهای DC و حفاظت شبكه های DC بررسی و در فصل چهارم سیستم نظارتی و كنترلی به همراه یک نمونه PLC مربوط به پست های تراكشن تشریح شده است.
:
مسائل مربوط به تولید، بهره برداری و كنترل در یک شبكه قدرت، كه امروز به عنوان یكی از بزرگترین سیستم های موجود دنیا مطرح است، بدون شك بسیار گسترده، پیچیده و در عین حال جالب است. یكی از مسائل حائز اهمیت در بهره برداری اقتصادی از شبكه های قدرت، مسئله در مدار قرار گرفتن واحدهای تولیدی است. هماهنگی و تطابق بین بار مصرفی و تولید، یكی از خصوصیات مهم شبكه های
قدرت پیشرفته است. برای اقتصادی بودن عملكرد سیستم و كنترل موثر بر آن، لازم است كه در یک طیف زمانی، میزان تولید با میزان مصرف هماهنگی داشته باشد.
در صنعت برق طراحی و بهره برداری بهینه و موثر اقتصادی همواره مورد نظر بوده است. تا سال 1973 میلادی و قبل از تحریم نفتی كه منجر به افزایش سرسام آور قیمت نفت گردید، شركت های تولید برق در ایالات متحده امریكا حدود 20 درصد از كل درآمد خود را صرف هزینه سوخت می كردند. تا سال 1980 میلادی این رقم به حدود 40 درصد رسید. در دوره پنج ساله متعاقب 1973 میلادی هزینه سوخت، نرخ رشد سالیانه ای معادل 25 درصد داشته است. ارقام فوق نمایشگر اهمیت استفاده مؤثر از مواد سوختی است كه غالبا به صورت غیر قابل تجدید مورد استفاده قرار می گیرند. افزایش پیوسته قیمت مواد سوختی و نیز تورم سالانه باعث شده است كه همواره بهره برداری اقتصادی از سیستم های تولید انرژی الكتریكی مورد توجه و مطالعه قرار گرفته باشد.
معمولا مصرف كل یک سیستم قدرت در حال كار از ظرفیت نصب شده و قابل بهره برداری آن كمتر است. این تفاوت حتی در سیستم های قدرتی كه با كمبود تولید برق در ساعات اوج مصرف مواجه اند، در قسمت عمده ای از ساعات شبانه روز به چشم می خورد. لذا امكان انتخاب بهینه واحدهای تولید كننده برای تامین مصرف برق در هر فاصله زمانی چند دقیقه ای كه میزان مصرف تقریبا ثابت می ماند، به عنوان یک مساله توزیع بهینه بار مطرح می شود.
در مطالعه و بررسی مسائل مربوط به بهره برداری از سیستم های قدرت، پارامترهای زیادی مورد توجه قرار دارند. در بهره برداری اقتصادی یكی از مهم ترین این پارامترها مجموعه مشخصات ورودی و خروجی واحدهای تولید انرژی است. به عنوان مثال هر واحد حرارتی شامل یک دیگ بخار، توربین و ژنراتور می باشد. خروجی الكتریكی این مجموعه در عین اتصال به سیستم قدرت، شبكه برق محلی نیروگاه را نیز تغذیه می نماید. در تعریف مشخصات یک واحد، از واژه ورودی ناخالص در مقابل خروجی خالص صحبت می كنیم. ورودی ناخالص، ورودی كلی به واحد، بر حسب دلار بر ساعت، مقدار سوخت بر ساعت یا هر مشخصه دیگر است و خروجی خالص واحد، شامل انرژی الكتریكی حاصله از ژنراتور می باشد.
در توزیع بهینه بار می توان به ملاك های مختلفی توجه نمود. معمولا كمینه شدن هزینه سوخت به عنوان عمده ترین هزینه قابل كنترل تولید، یكی از اهداف اصلی موردنظر است. همچنین تامین انرژی الكتریكی مورد تقاضا با قابلیت اعتماد بالا و مطمئن كه با شاخص های گوناگونی مانند ظرفیت ذخیره گردان و غیره سنجیده می شود ، می تواند به صورت یک تابع هدف دیگر و یا به شكل قیود دیگری به مسئله اضافه گردد. بنابراین به طور اختصار مساله توزیع بهینه بار را می توان به صورت یک مساله كمینه سازی هزینه تولید كه تحت شرایط برقراری قیود مختلف، در نظر گرفت. در این نوع مسئله فرض بر این است كه بار مصرفی كل سیستم معلوم است و هدف تعیین سهم بهینه تولید واحدهای روشن برای تامین این بار می باشد. با توجه به اینكه واحدهای حرارتی بسته به نوع سوخت و ساختمان فیزیكی آنها زمان قابل توجهی برای راه اندازی و اتصال به شبكه نیاز دارند و این زمان برای بعضی از نیروگاه ها به یک ساعت و یا بیشتر می رسد، لازم است از یک تا چند شبانه روز قبل برنامه ریزی و پیش بینی لازم برای روشن بودن واحدهای مناسب و راه اندازی آنها قبل از زمان تولید موردنظر صورت پذیرد. به این برنامه ریزی كوتاه مدت اصطلاحا تعیین واحد می گوییم.
با توسعه نگرشهای زیست محیطی و راهبردهای صرفه جویانه در بهره برداری از منابع انرژی های تجدید ناپذیر استفاده از انرژی نو و تجدید پذیر ازجمله انرژی باد در مقایسه با آنها بسیار كارآمد بوده بطوریكه در بسیاری از كشورهای جهان روبه فزونی گذاشته است. با توجه به اینكه سیستم های ذخیره كننده انرژی معمولا به صورت محلی بوده و به بار نزدیک اند از این رو سیستم های ذخیره كننده انرژی می توانند به منظور مدیریت بار و پرشدگی خطوط مورد استفاده قرار گیرند. سیستم های ذخیره كننده انرژی، در واقع به عنوان مكمل و واسطی بین انرژی باد و سایر انرژی های تجدید پذیر در سیستم قدرت می باشند. با توجه به اینكه انرژی باد یک منبع غیر قابل كنترل و وابسته به وضعیت باد در منطقه است و چون سیستم های ذخیره كننده انرژی، منابعی قابل كنترل اند، با بهره گرفتن از این منابع در كنار انرژی باد می توان باد را به یک منبع قابل كنترل تبدیل نمود و با توجه به هزینه تولید پایین انرژی های تجدید %
قیمت : 14700 تومان






